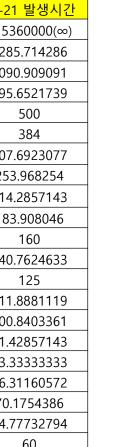
PHOX 누적과부하 테이블 계산기 -가이드북-(Ver1.1)

[2020.10.08]

-제어설계팀-


과부하테이블의 적용 방식

PHOX 과부하 테이블 개요

서보기전	를 과부하 테이블
부하율[%]	AL-21 발생시간
100	315360000(∞)
110	31536000
120	1808384
130	904192
140	452096
150	226048
160	113024
170	56512
180	28256
190	14128
200	7064
210	3532
220	1766
230	883
240	66
250	60
260	50
270	43
280	37
290	35
300	32

모터기준 과부하 테이블				
부하율[%]	AL-21 발생시간			
100	315360000(∞)			
110	2285.714286			
120	1090.909091			
130	695.6521739			
140	500			
150	384			
160	307.6923077			
170	253.968254			
180	214.2857143			
190	183.908046			
200	160			
210	140.7624633			
220	125			
230	111.8881119			
240	100.8403361			
250	91.42857143			
260	83.33333333			
270	76.31160572			
280	70.1754386			
290	64.77732794			
300	60			

VS

최종 과부하 테이블					
부하율[%]	AL-21 발생시간				
100	315360000(∞)				
110	2285.714286				
120	1090.909091				
130	695.6521739				
140	500				
150	384				
160	307.6923077				
170	253.968254				
180	214.2857143				
190	183.908046				
200	160				
210	140.7624633				
220	125				
230	111.8881119				
240	66				
250	60				
260	50				
270	43				
280	37				
290	35				
300	32				

- 과부하테이블은 서보기준 과부하 테이블과 모터기준 과부하 테이블을 혼합하여 함께 사용합니다.
- 두 개의 과부하 테이블을 이용하여 모터의 열적 소손을 함께 고려합니다.

서보 기준 과부하 테이블

주파(kHz)	16[kHz]
부하율(%)	Operation & Stall
100%	∞
110%	31536000
120%	1808384
130%	904192
140%	452096
150%	226048
160%	113024
170%	56512
180%	28256
190%	14128
200%	7064
210%	3532
220%	1766
230%	883
240%	66
250%	60
260%	50
270%	43
280%	37
290%	35
300%	32

- 서보기준 과부하 테이블은 매뉴얼에 기재되어 있습니다.
- 상기는 6[A] / 16[kHz] 과부하 테이블입니다.

모터 기준 과부하 테이블의 생성

5.10 모터 과부하 보호기능

모터의 과열에 의한 소손을 방지하기 위하여 I²T알고리즘에 의한 모터 과부하 보호 기능과 모터 열적 시정수를 통한 모터 과부하 보호 기능을 제공합니다. 예를 들어 모터의 스펙이 아래와 같다고 가정하면,

모터 정격 전류 : 3A 모터 최대 전류 : 9A

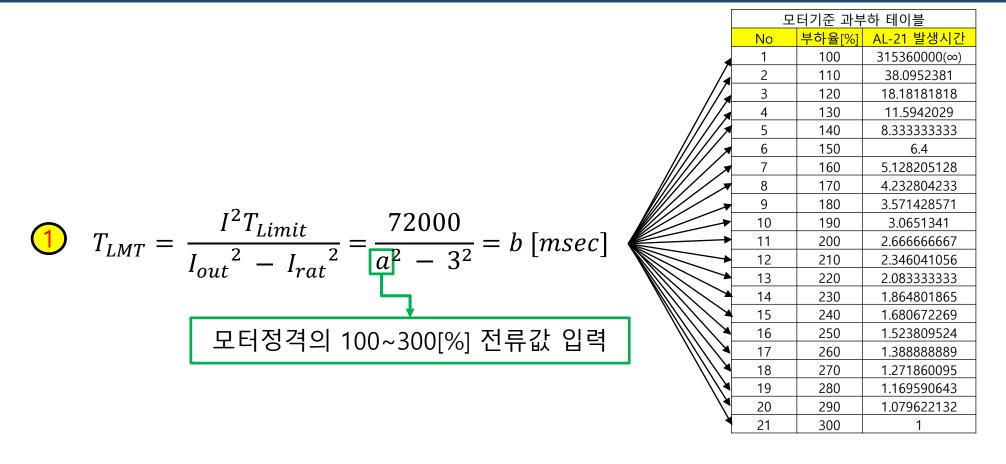
최대 전류에서의 동작시간 : 1000ms

드라이브 출력 전류(Iout): 6A

5.10.1 I²T 알고리즘에 의한 보호

드라이브에서 출력된 전류의 흐름을 추적하여 모터 추정온도가 기준을 초과할 경우 모터 전류 출력을 차단하는 기능을 제공합니다. 본 기능은 모터 파라미터[0x2000] 혹은 3rd Party Motor 파라미터[0x2802], [0x2803]와 최대전류에서의 동작시간[0x2031]을 토대로 산출하기 때문에 정확히 설정 하여야 합니다.

$$I^2T_{Limit} = ((9A)^2 - (3A)^2) \times 1000ms = 72000A^2ms$$


$$T_{LMT} = \frac{I^2 T_{Limit}}{I_{out}^2 - (3A)^2} = \frac{72000A^2 ms}{(6A)^2 - (3A)^2} = 2666ms$$

- 모터 기준 과부하 테이블을 별도로 제작하는 이유는 모터의 열적 소손을 방지하는데 목적이 있습니다.(위 내용 참고)
- 서보는 설정된 모터 정격/최대 전류를 이용하여 모터 기준 과부하 테이블을 제작합니다.
- 과부하당 AL-21이 발생하는 시간 계산 예시(1~2번)

1번 : 정격3[A] / 최대9[A] 모터를 장착시

2번: 모터 정격의 200[%] 즉, 6[A] 일 때 AL-21은 2.6[sec] 만에 발생

모터 기준 과부하 테이블의 생성

• 1번의 계산식 a 변수에 모터 정격의 100~300[%] 전류값을 각각 입력하여 모터 기준 과부하 테이블이 작성합니다.

실제 적용되는 과부하 테이블 생성

VS

서보기	도 과부하 테이블
부하율[%]	AL-21 발생시간
101	315360000(∞)
110	31536000
120	1808384
130	904192
140	452096
150	226048
160	113024
170	56512
180	28256
190	14128
200	7064
210	3532
220	1766
230	883
240	66
250	60
260	50
270	43
280	37
290	35
300	32

모터기	를 과부하 테이블
부하율[%]	AL-21 발생시간
100	315360000(∞)
110	38.0952381
120	18.18181818
130	11.5942029
140	8.33333333
150	6.4
160	5.128205128
170	4.232804233
180	3.571428571
190	3.0651341
200	2.666666667
210	2.346041056
220	2.083333333
230	1.864801865
240	1.680672269
250	1.523809524
260	1.388888889
270	1.271860095
280	1.169590643
290	1.079622132
300	1

모터기준	를 과부하 테이블		실제 과부하	캬
하율[%]	AL-21 발생시간	No	부하율[%]	
100	315360000(∞)	1	100	
110	38.0952381	2	110	
120	18.18181818	3	120	
130	11.5942029	4	130	
140	8.333333333	5	140	
150	6.4	6	150	
160	5.128205128	7	160	
170	4.232804233	8	170	
180	3.571428571	9	180	
190	3.0651341	10	190	
200	2.666666667	11	200	
210	2.346041056	12	210	
220	2.083333333	13	220	
230	1.864801865	14	230	
240	1.680672269	15	240	
250	1.523809524	16	250	
260	1.388888889	17	260	
270	1.271860095	18	270	
280	1.169590643	19	280	
290	1.079622132	20	290	
300	1	21	300	

- 두 개의 테이블에 부하율당 AL-21 발생 시간을 비교후 둘 중 작은값을 선정하여 실제 과부하 테이블을 생성합니다.
- PHOX는 오른쪽의 실제 과부하 테이블로 AL-21의 발생 시간을 최종 결정합니다.

누적과부하 계산기 사용법

예를 들어 모터의 스펙이 아래와 같다고 가정하면,

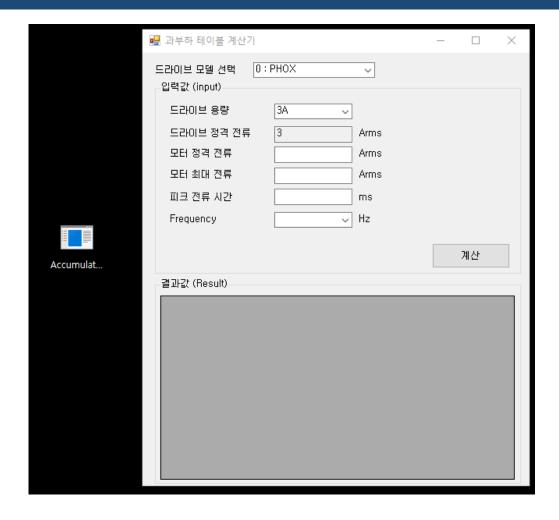
모터 정격 전류 : 3A 모터 최대 전류 : 9A

최대 전류에서의 동작시간:1000ms

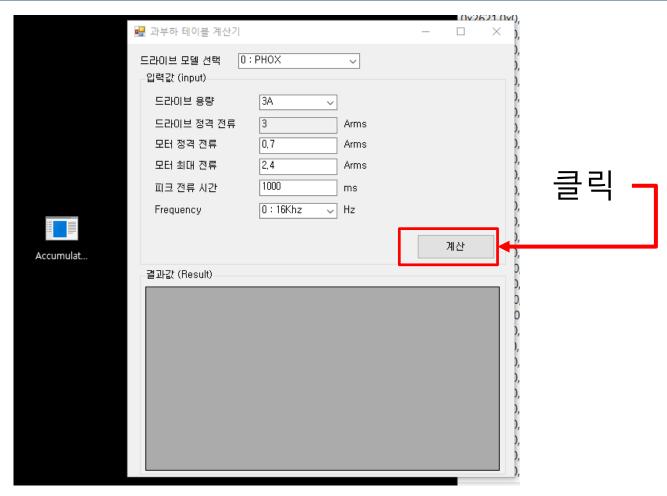
드라이브 출력 전류(I_{out}): 6A

$$I^2T_{Limit} = ((9A)^2 - (3A)^2) \times 1000ms = 72000A^2ms$$

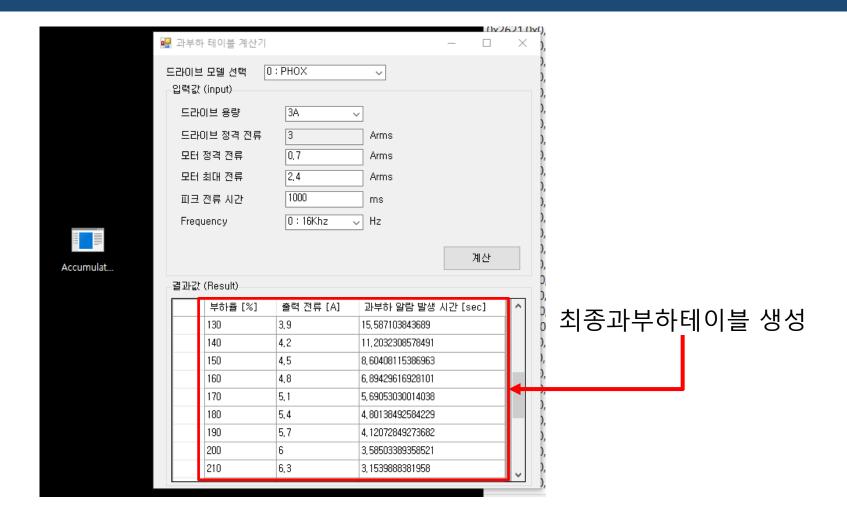
$$T_{LMT} = \frac{I^2 T_{Limit}}{I_{out}^2 - (3A)^2} = \frac{72000A^2 ms}{(6A)^2 - (3A)^2} = 2666ms$$


실제 과부하 테이블				
No	부하율[%]	AL-21 발생시간		
1	100	315360000(∞)		
2	110	38.0952381		
3	120	18.18181818		
4	130	11.5942029		
5	140	8.33333333		
6	150	6.4		
7	160	5.128205128		
8	170	4.232804233		
9	180	3.571428571		
10	190	3.0651341		
11	200	2.666666667		
12	210	2.346041056		
13	220	2.083333333		
14	230	1.864801865		
15	240	1.680672269		
16	250	1.523809524		
17	260	1.38888889		
18	270	1.271860095		
19	280	1.169590643		
20	290	1.079622132		
21	300	1		

- 실제 적용되는 과부하 테이블은 PHOX 내부에서 만들어집니다.
- 만약 사용자가 실제 과부하 테이블을 보고 싶다면 상기 계산공식을 이용하여 직접 계산해야 합니다.
- 계산 과정이 번거롭고 매우 불편합니다.

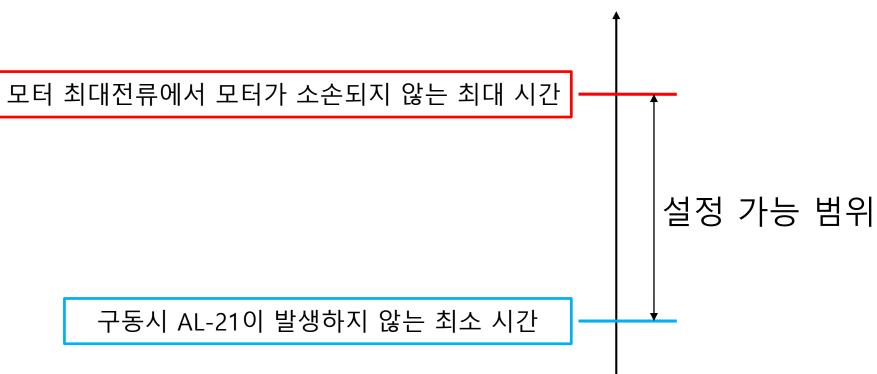


- PHOX 누적과부하 계산기를 사용하면 최종 적용되는 과부하 테이블을 볼 수 있습니다.
- 우선 상기 아이콘을 더블 클릭합니다.



• PHOX 누적과부하 계산기 창이 생성됩니다.

- 서보와 모터사양을 기입합니다.
- 피크전류시간 -> Operation Time at Peak Current[0x2031]의 값을 기입합니다.
- Frequency -> PWM Frequency[0x2030]의 값을 기입합니다.
- 다음 계산을 클릭합니다.


• 계산을 클릭하면 하단에 0~300[%]까지의 최종 과부하 테이블이 자동으로 나타납니다.

Operation Time at Peak Current[0x2031]의 적절한 설정 방법

Operation Time at Peak Current[0x2031] 설정방법

Index	SubIndex	Name	Value	Default	Туре	R/W	Unit	Min	Max
0x2031	0x0	Operation Time at Peak Current	5000	1	UINT	rw	ms	1	65535

Operation Time at Peak Current[0x2031]

- Operation Time at Peak Current[0x2031]을 적절한 범위내 설정해야 합니다.
- 그렇지 않으면 구동중 AL-21이 빈번하게 발생하거나 모터가 소손될 수 있습니다.
- 최소범위: 구동중 AL-21이 발생하지 않는 시간
- 최대범위: 모터에 최대전류인가시 소손되지 않는 시간

Index	SubIndex	Name	Value
0x2031	0x0	Operation Time at Peak Current	1000

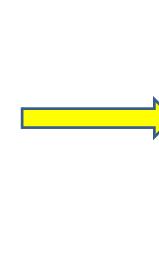
VS

서보기준 과부하 테이블			
부하율[%]	AL-21 발생시간		
101	315360000(∞)		
110	31536000		
120	1808384		
130	904192		
140	452096		
150	226048		
160	113024		
170	56512		
180	28256		
190	14128		
200	7064		
210	3532		
220	1766		
230	883		
240	66		
250	60		
260	50		
270	43		
280	37		
290	35		
300	32		

모터기준 과부하 테이블			
부하율[%]	AL-21 발생시간		
100	315360000(∞)		
110	38.0952381		
120	18.18181818		
130	11.5942029		
140	8.33333333		
150	6.4		
160	5.128205128		
170	4.232804233		
180	3.571428571		
190	3.0651341		
200	2.666666667		
210	2.346041056		
220	2.083333333		
230	1.864801865		
240	1.680672269		
250	1.523809524		
260	1.38888889		
270	1.271860095		
280	1.169590643		
290	1.079622132		
200	1 1		

	<u> </u>
모터기	돈 과부하 테이블
부하율[%]	AL-21 발생시간
100	315360000(∞)
110	38.0952381
120	18.18181818
130	11.5942029
140	8.33333333
150	6.4
160	5.128205128
170	4.232804233
180	3.571428571
190	3.0651341
200	2.666666667
210	2.346041056
220	2.083333333
230	1.864801865
240	1.680672269
250	1.523809524
260	1.38888889
270	1.271860095
280	1.169590643
290	1.079622132
300	1

실제 과부하 테이블						
No	부하율[%]	AL-21 발생시간				
1	100	315360000(∞)				
2	110 38.0952381					
3	120	18.18181818				
4	130	11.5942029				
5	140	8.33333333				
6	150	6.4				
7	160	5.128205128				
8	170	4.232804233				
9	180	3.571428571				
10	190	3.0651341				
11	200	2.666666667				
12	210	2.346041056				
13	220	2.083333333				
14	230	1.864801865				
15	240	1.680672269				
16	250	1.523809524				
17	260	1.38888889				
18	270	1.271860095				
19	280	1.169590643				
20	290	1.079622132				
21	21 300 1					


- 상기는 1000[msec]를 설정시 최종 과부하 테이블 예시입니다.
- 값이 작은 경우 200[%] 이상의 과부하가 걸리면 2초내에 AL-21(누적과부하알람)이 발생합니다.

	Index	SubIndex	Name	Value
0	x2031	0x0	Operation Time at Peak Current	60000

서보기준 과부하 테이블					
부하율[%]	AL-21 발생시간				
101	315360000(∞)				
110	31536000				
120	1808384				
130	904192				
140	452096				
150	226048				
160	113024				
170	56512				
180	28256				
190	14128				
200	7064				
210	3532				
220	1766				
230	883				
240	66				
250	60				
260	50				
270	43				
280	37				
290	35				
300	32				


모터기근	를 과부하 테이블					
부하율[%]	AL-21 발생시간					
100	315360000(∞)					
110	2285.714286					
120	1090.909091					
130	695.6521739					
140	500					
150	384					
160	307.6923077					
170	253.968254					
180	214.2857143					
190	183.908046					
200	160					
210	140.7624633					
220	125					
230	111.8881119					
240	100.8403361					
250	91.42857143					
260	83.3333333					
270	76.31160572					
280	70.1754386					
290	64.77732794					
300	60					

실제 과부하 테이블						
 <mark>부하율[%]</mark>	AL-21 발생시간					
100	315360000(∞)					
110	2285.714286					
120	1090.909091					
130	695.6521739					
140	500					
150	384					
160	307.6923077					
170	253.968254					
180	214.2857143					
190	183.908046					
200	160					
210	140.7624633					
220	125					
230	111.8881119					
240	66					
250	60					
260	50					
270	43					
280	37					
290	35					
300	32					

- 다음은 기존 보다 60배 큰 60000[msec]를 입력시 최종 과부하 테이블의 값 입니다.
- Operation Time at Peak Current[0x2031]의 입력값이 클수록 AL-21의 발생시간은 길어집니다.

1000 입력시						
실제 과부하 테이블						
<mark>부하율[%]</mark>	AL-21 발생시간					
101	398.0099502					
110	38.0952381					
120	18.18181818					
130	11.5942029					
140	8.333333333					
150	6.4					
160	5.128205128					
170	4.232804233					
180	3.571428571					
190	3.0651341					
200	2.666666667					
210	2.346041056					
220	2.083333333					
230	1.864801865					
240	1.680672269					
250	1.523809524					
260	1.388888889					
270	1.271860095					
280	1.169590643					
290	1.079622132					
300	1					

2000 입력시						
실제 과부하 테이블						
<mark>부하율[%]</mark>	AL-21 발생시간					
101	796.0199005					
110	76.19047619					
120	36.36363636					
130	23.1884058					
140	16.66666667					
150	12.8					
160	10.25641026					
170	8.465608466					
180	7.142857143					
190	6.130268199					
200	5.333333333					
210	4.692082111					
220	4.166666667					
230	3.72960373					
240	3.361344538					
250	3.047619048					
260	2.777777778					
270	2.543720191					
280	2.339181287					
290	2.159244265					
300	2					

3000 입력시					
실제 과부하 테이블					
<mark>부하율[%]</mark>	AL-21 발생시간				
101	1194.029851				
110	114.2857143				
120	54.54545455				
130	34.7826087				
140	25				
150	19.2				
160	15.38461538				
170	12.6984127				
180	10.71428571				
190	9.195402299				
200	8				
210	7.038123167				
220	6.25				
230	5.594405594				
240	5.042016807				
250	4.571428571				
260	4.166666667				
270	3.815580286				
280	3.50877193				
290	3.238866397				
300	3				

- 누적과부하 계산기를 이용하여 위와 같이 임이의 Operation Time at Peak Current[0x2031]을 입력하고
- 각각의 필드에 알맞은 과부하 테이블을 쉽게 선정 할 수 있습니다.

	Index	SubIndex	Name	Value	Default	Туре	R/W	Unit	Min	Max
Ш	0x2031	0x0	Operation Time at Peak Current	5000	1	UINT	rw	ms	1	65535
										Ir Ir
입력										

- 프로그램을 이용하여 적절한 설정값을 찾았다면 Operation Time at Peak Current[0x2031]에 입력하시기 바랍니다.
- 저장후 반드시 PHOX의 전원을 OFF/ON해야 새로운 과부하 테이블이 적용됩니다.

